ANNEX B ## Methodology for Estimating the Carbon Content of Fossil Fuels This annex presents the background and methodology for estimating the carbon content of fossil fuels combusted in the United States. The carbon content of a particular fossil fuel represents the maximum potential emissions to the atmosphere if all carbon in the fuel is oxidized during combustion. The carbon content coefficients used in this report were developed using methods first outlined in EIA's *Emissions of Greenhouse Gases in the United States:* 1987-1992 (1994) and were developed primarily by EIA. This annex describes an updated methodology for estimating the carbon content of coal, and presents a time-series analysis of changes in U.S. carbon content coefficients. A summary of carbon content coefficients used in this report appears in Table B-1. Though the methods for estimating carbon contents for coal, natural gas, and petroleum products differ in their details, they each follow the same basic approach. First, because carbon coefficients are presented in terms of mass per unit energy (i.e., teragrams carbon per quadrillion Btu or Tg/QBtu), those fuels that are typically described in volumetric units (petroleum products and natural gas) are converted to units of mass using an estimated density. Second, carbon contents are derived from fuel sample data, using descriptive statistics to estimate the carbon share of the fuel by weight. The heat content of the fuel is then estimated based on the sample data, or where sample data are unavailable or unrepresentative, by default values that reflect the characteristics of the fuel as defined by market requirements. A discussion of each fuel appears below. The carbon content of coal is described first because approximately one-third of all U.S. carbon emissions from fossil fuel combustion are associated with coal consumption. The methods and sources for estimating the carbon content of natural gas are provided next. Approximately one-fifth of U.S. greenhouse gas emissions from fossil fuel combustion are attributable to natural gas consumption. Finally, this annex examines carbon contents of petroleum products. U.S. energy consumption statistics account for more than 20 different petroleum products. Table B-1: Carbon Content Coefficients Used in this Report (Tg Carbon/QBtu) | Fuel Type | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | |-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | Coal | | | | | | | | | | | | | | Residential Coal* | 26.23 | 26.30 | 26.42 | 26.19 | 26.12 | 26.16 | 26.06 | 25.93 | 26.09 | 26.02 | 26.04 | 26.04 p | | Commercial Coal* | 26.23 | 26.30 | 26.42 | 26.19 | 26.12 | 26.16 | 26.06 | 25.93 | 26.09 | 26.02 | 26.04 | 26.04 p | | Industrial Coking Coal* | 25.55 | 25.56 | 25.55 | 25.53 | 25.57 | 25.57 | 25.56 | 25.60 | 25.62 | 25.60 | 25.63 | 25.63 p | | Industrial Other Coal* | 25.82 | 25.89 | 25.87 | 25.77 | 25.77 | 25.80 | 25.75 | 25.76 | 25.79 | 25.80 | 25.74 | 25.74 p | | Utility Coal* | 25.95 | 25.97 | 25.99 | 25.87 | 25.88 | 25.92 | 25.92 | 25.91 | 25.93 | 25.97 | 25.98 | 25.98 p | | Natural Gas | 14.47 | 14.47 | 14.47 | 14.47 | 14.47 | 14.47 | 14.47 | 14.47 | 14.47 | 14.47 | 14.47 | 14.47 | | Petroleum | | | | | | | | | | | | | | Asphalt and Road Oil | 20.62 | 20.62 | 20.62 | 20.62 | 20.62 | 20.62 | 20.62 | 20.62 | 20.62 | 20.62 | 20.62 | 20.62 | | Aviation Gasoline | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | | Distillate Fuel Oil | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | | Jet Fuel* | 19.40 | 19.40 | 19.39 | 19.37 | 19.35 | 19.34 | 19.33 | 19.33 | 19.33 | 19.33 | 19.33 | 19.33 | | Kerosene | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 | | LPG* | 16.99 | 16.98 | 16.99 | 16.97 | 17.01 | 17.00 | 16.99 | 16.99 | 16.99 | 16.99 | 16.99 | 16.99 | | LPG (Territories)* | 17.21 | 17.21 | 17.21 | 17.22 | 17.22 | 17.20 | 17.20 | 17.18 | 17.18 | 17.18 | 17.18 | 17.18 | | LPG (non-energy use)* | 16.83 | 16.84 | 16.84 | 16.80 | 16.88 | 16.87 | 16.86 | 16.88 | 16.87 | 16.88 | 16.87 | 16.88 | | Lubricants | 20.24 | 20.24 | 20.24 | 20.24 | 20.24 | 20.24 | 20.24 | 20.24 | 20.24 | 20.24 | 20.24 | 20.24 | | Motor Gasoline* | 19.41 | 19.41 | 19.42 | 19.43 | 19.45 | 19.38 | 19.36 | 19.35 | 19.33 | 19.33 | 19.34 | 19.34 | | Residual Fuel | 21.49 | 21.49 | 21.49 | 21.49 | 21.49 | 21.49 | 21.49 | 21.49 | 21.49 | 21.49 | 21.49 | 21.49 | | Other Petroleum | | | | | | | | | | | | | | Av Gas Blend Comp. | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 | | Crude Oil | 20.16 | 20.18 | 20.22 | 20.22 | 20.21 | 20.23 | 20.25 | 20.24 | 20.24 | 20.19 | 20.23 | 20.29 | | Misc. Products | 20.16 | 20.18 | 20.22 | 20.22 | 20.21 | 20.23 | 20.25 | 20.24 | 20.24 | 20.19 | 20.23 | 20.29 | | Misc. Products (Terr.) | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | | Naphtha (<401 deg. F) | 18.14 | 18.14 | 18.14 | 18.14 | 18.14 | 18.14 | 18.14 | 18.14 | 18.14 | 18.14 | 18.14 | 18.14 | | Other oil (>401 deg. F) | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 | | Pentanes Plus | 18.24 | 18.24 | 18.24 | 18.24 | 18.24 | 18.24 | 18.24 | 18.24 | 18.24 | 18.24 | 18.24 | 18.24 | | Petrochemical Feed. | 19.37 | 19.37 | 19.37 | 19.37 | 19.37 | 19.37 | 19.37 | 19.37 | 19.37 | 19.37 | 19.37 | 19.37 | | Petroleum Coke | 27.85 | 27.85 | 27.85 | 27.85 | 27.85 | 27.85 | 27.85 | 27.85 | 27.85 | 27.85 | 27.85 | 27.85 | |---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Still Gas | 17.51 | 17.51 | 17.51 | 17.51 | 17.51 | 17.51 | 17.51 | 17.51 | 17.51 | 17.51 | 17.51 | 17.51 | | Special Naphtha | 19.86 | 19.86 | 19.86 | 19.86 | 19.86 | 19.86 | 19.86 | 19.86 | 19.86 | 19.86 | 19.86 | 19.86 | | Unfinished Oils | 20.16 | 20.18 | 20.22 | 20.22 | 20.21 | 20.23 | 20.25 | 20.24 | 20.24 | 20.19 | 20.23 | 20.29 | | Waxes | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | | Other Wax and Misc. | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 | | Geothermal | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | ^{*}Carbon contents vary annually based on changes in fuel composition. #### Coal Approximately one-third of all U.S. carbon dioxide emissions from fossil fuel combustion are associated with coal consumption. Although the IPCC guidelines provide carbon contents for coal according to rank, it was necessary to develop carbon content coefficients by consuming sector to match the format in which coal consumption is reported by EIA. Because the carbon content of coal varies by the state in which it was mined and by coal rank, and because the sources of coal for each consuming sector vary by year, the weighted average carbon content for coal combusted in each consuming sector also varies over time. A time series of carbon contents by coal rank and consuming sector appears in Table B-2.² Table B-2: Carbon Content Coefficients for Coal by Consuming Sector and Coal Rank (Tg/QBtu) (1990-2001) | Consuming Sector | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | |------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | Electric Power | 25.95 | 25.97 | 25.99 | 25.87 | 25.88 | 25.92 | 25.92 | 25.91 | 25.93 | 25.97 | 25.98 | 25.98 p | | Industrial Coking | 25.55 | 25.56 | 25.55 | 25.53 | 25.57 | 25.57 | 25.56 | 25.60 | 25.62 | 25.60 | 25.63 | 25.63 p | | Other Industrial | 25.82 | 25.89 | 25.87 | 25.77 | 25.77 | 25.80 | 25.75 | 25.76 | 25.79 | 25.80 | 25.74 | 25.74 p | | Residential/Commercial | 26.23 | 26.30 | 26.42 | 26.19 | 26.12 | 26.16 | 26.06 | 25.93 | 26.09 | 26.02 | 26.04 | 26.04 p | | Coal Rank | | | | | | | | | | | | | | Anthracite | 28.26 | 28.26 | 28.26 | 28.26 | 28.26 | 28.26 | 28.26 | 28.26 | 28.26 | 28.26 | 28.26 | 28.26 p | | Bituminous | 25.43 | 25.45 | 25.44 | 25.45 | 25.46 | 25.47 | 25.47 | 25.48 | 25.47 | 25.48 | 25.49 | 25.49 p | | Sub-bituminous | 26.50 | 26.49 | 26.49 | 26.48 | 26.49 | 26.49 | 26.49 | 26.49 | 26.49 | 26.49 | 26.48 | 26.48 p | | Lignite | 26.19 | 26.21 | 26.22 | 26.21 | 26.24 | 26.22 | 26.17 | 26.20 | 26.23 | 26.26 | 26.30 | 26.30 p | p Preliminary Sources: USGS (1998) and SAIC (2002). ## Methodology The methodology for developing carbon contents for coal by consuming sector consists of four steps. ## Step 1. Determine carbon contents by rank and by state of origin Carbon contents by rank are estimated on the basis of 6,588 coal samples collected by the U.S. Geological Survey between 1973 and 1989. These coal samples are classified according to rank and state of origin. For each rank in each state, the average heat content and carbon content of the coal samples are calculated. Dividing the carbon content (reported in pounds carbon dioxide) by the heat content (reported in million Btu or MMBtu) yields an average carbon content coefficient. This coefficient is then converted into units of Tg/QBtu. p Preliminary All coefficients based on higher heating value.¹ ¹ Higher heating value (gross heating value) is the total amount of heat released when a fuel is burned. Coal, crude oil, and natural gas all include chemical compounds of carbon and hydrogen. When those fuels are burned, the carbon and hydrogen combine with oxygen in the air to produce carbon dioxide and water. Some of the energy released in burning goes into transforming the water into steam and is usually lost. The amount of heat spent in transforming the water into steam is counted as part of gross heat content. Lower heating value (net
heating value), in contrast, does not include the heat spent in transforming the water into steam. Using a simplified methodology based on International Energy Agency defaults, higher heating value can be converted to lower heating value for coal and petroleum products by multiplying by 0.95 and for natural gas by multiplying by 0.90. Carbon content coefficients are presented in higher heating value because U.S. energy statistics are reported by higher heating value. ² For a comparison to earlier estimated carbon contents please see *Chronology and Explanation of Changes in Individual Carbon Content Coefficients of Fossil Fuels* near the end of this annex. #### Step 2. Allocate sectoral consumption by rank and state of origin U.S. energy statistics provide data on the origin of coal used in four areas: 1) the electric power industry, 2) industrial coking, 3) all other industrial uses, and 4) the residential and commercial end-use sectors. Because U.S. energy statistics do not provide the distribution of coal rank consumed by each consuming sector, it is assumed that each sector consumes a representative mixture of coal ranks from a particular state that matches the mixture of all coal produced in that state during the year. ## Step 3. Weight sectoral carbon contents to reflect the rank and state of origin of coal consumed Sectoral carbon contents are calculated by multiplying the share of coal purchased from each state by rank by the carbon content estimated in Step 1. The resulting partial carbon contents are then totaled across all states and ranks to generate a national sectoral carbon content. $$C_{sector} = \sum S_{rank1} * C_{rank1} + S_{rank2} * C_{rank2} + \dots S_{rank50} * C_{rank50}$$ Where: C_{sector} is the carbon content by consuming sector; S_{rank} is the portion of consuming sector coal consumption attributed to a given rank in each state; and C_{rank} is the estimated carbon content of a given rank in each state. ## Step 4. Develop national-level carbon contents by rank for comparison to IPCC defaults Although not used to calculate emissions, national-level carbon contents by rank are more easily compared to carbon contents of other countries than are sectoral carbon contents. This step requires weighting the state-level carbon contents by rank developed under Step 1 by overall coal production by state and rank (consumption by rank is unavailable in U.S. energy statistics). Each state-level carbon content by rank is multiplied by the share of national production of that rank that each state represents. The resulting partial carbon contents are then summed across all states to generate an overall carbon content for each rank. $$N_{rank} = \sum P_{rank1} * C_{rank1} + P_{rank2} * C_{rank2} + \dots P_{rankn} * C_{rankn}$$ Where: N_{rank} is the national carbon content by rank; P_{rank} is the portion of U.S. coal production attributed to a given rank in each state; and C_{rank} is the estimated carbon content of a given rank in each state. ## **Data Sources** The ultimate analyses of coal samples was based on the 6,588 coal samples from the U.S. Geological Survey, CoalQual Database Version 2.0 (1998). Data contained in the CoalQual Database are derived primarily from samples taken between 1973 and 1989, and were largely reported in State Geological Surveys. Data on coal distribution by state and consumption by sector, as well as coal production by state and rank, was obtained from EIA's *Coal Industry Annual* (2002a). ## Uncertainty Carbon contents vary considerably by state. Bituminous coal production and sub-bituminous coal production represented 53.4 percent and 38.1 percent of total U.S. supply in 2000, respectively. Carbon content coefficients for bituminous coal vary from a low of 200.5 pounds carbon dioxide per MMBtu in Kansas to a high of 232.0 pounds carbon dioxide per MMBtu in Montana. In 2000, however, just 200 tons of bituminous coal were produced in Kansas, and none were produced in Montana. In 2000, more than 60 percent of bituminous coal was produced in three states: West Virginia, Kentucky, and Pennsylvania, and this share has remained fairly constant since 1990. These three states show a variation in carbon content for bituminous coals of ± 0.7 percent, based on more than 2,000 samples (See Table B-3). Similarly, the carbon content coefficients for sub-bituminous coal range from 201.3 pounds carbon dioxide per MMBtu in Utah to 217.5 pounds carbon dioxide per MMBtu in Washington. Utah showed no sub-bituminous coal production in 2000, and Washington produced just 4,000 tons. Wyoming, however, has represented between 75 percent and 82 percent of total sub-bituminous coal production in the United States since 1990. Thus, the carbon content coefficient for Wyoming, based on 435 samples, dominates. The interquartile range of carbon content coefficients among samples of sub-bituminous coal in Wyoming was ± 1.5 percent from the mean. Similarly, this range among samples of bituminous coal from West Virginia, Kentucky, and Pennsylvania was ± 1.0 percent or less for each state. The large number of samples and the low variability within the sample set of the states that represent the predominant source of supply for U.S. coal suggest that the uncertainty in this factor is very low, on the order of ± 1.0 percent. Table B-3: Variability in Carbon Content Coefficients by Rank Across States (Kilograms Carbon Dioxide Per MMBtu) | | Number of | | Sub- | | | |---------------|-----------|------------|------------|------------|---------| | State | Samples | Bituminous | bituminous | Anthracite | Lignite | | Alabama | 946 | 92.85 | - | - | 99.11 | | Alaska | 90 | 98.34 | 98.11 | - | 98.66 | | Arizona | 11 | - | 97.52 | - | - | | Arkansas | 70 | 96.52 | - | - | 94.98 | | Colorado | 292 | 94.39 | 96.48 | - | 96.48 | | Georgia | 35 | 95.03 | - | - | - | | Idaho | 1 | - | 94.89 | - | - | | Illinois | 16 | 93.35 | - | - | - | | Indiana | 125 | 92.67 | - | - | - | | lowa | 89 | 91.94 | - | - | - | | Kansas | 28 | 90.94 | - | - | - | | Kentucky | 870 | 92.58 | - | - | - | | Louisiana | 1 | - | - | - | 96.03 | | Maryland | 46 | 94.35 | - | - | - | | Massachusetts | 3 | - | - | 114.82 | - | | Michigan | 3 | 92.85 | - | - | - | | Mississippi | 8 | - | - | - | 98.20 | | Missouri | 91 | 91.85 | - | - | - | | Montana | 301 | 105.23 | 97.75 | 103.60 | 99.38 | | Nevada | 2 | 94.39 | - | - | 99.84 | | New Mexico | 167 | 95.25 | 94.89 | 103.92 | - | | North Dakota | 186 | - | - | - | 99.56 | | Ohio | 646 | 91.85 | - | - | - | | Oklahoma | 46 | 92.67 | - | - | - | | Pennsylvania | 739 | 93.39 | - | 103.65 | - | | Tennessee | 58 | 92.80 | - | - | - | | Texas | 48 | - | - | - | 94.76 | | Utah | 152 | 96.07 | 91.31 | - | - | | Virginia | 456 | 93.53 | - | 98.52 | - | | Washington | 14 | 95.39 | 98.66 | 102.51 | 106.55 | | West Virginia | 566 | 93.89 | - | - | - | | Wyoming | 476 | 94.66 | 97.20 | - | - | ⁻ No Sample Data Available Sources: USGS (1998) and SAIC (2002). #### **Natural Gas** Natural gas is predominantly composed of methane, which is 75 percent carbon by weight and contains 14.2 Tg C/QBtu (Higher Heating Value), but it may also contain many other compounds that can lower or raise its overall carbon content. These other compounds may be divided into two classes: 1) natural gas liquids (NGLs), and 2) non-hydrocarbon gases. The most common NGLs are ethane (C_2H_6) , propane (C_3H_8) , butane (C_4H_{10}) , and, to a lesser extent, pentane (C_5H_{12}) and hexane (C_6H_{14}) . Because the NGLs have more carbon atoms than methane (which has only one), their presence increases the overall carbon content of natural gas. NGLs have a commercial value greater than that of methane, and therefore are usually separated from raw natural gas at gas processing plants and sold as separate products. Ethane is typically used as a petrochemical feedstock, propane and butane have diverse uses, and natural gasoline³ contributes to the gasoline/naphtha "octane pool," used primarily to make motor gasoline. Raw natural gas can also contain varying amounts of non-hydrocarbon gases, such as carbon dioxide, nitrogen, helium and other noble gases, and hydrogen sulfide. The share of non-hydrocarbon gases is usually less than 5 percent of the total, but there are individual natural gas reservoirs where the share can be much larger. The treatment of non-hydrocarbon gases in raw gas varies. Hydrogen sulfide is always removed. Inert gases are removed if their presence is substantial enough to reduce the energy content of the gas below pipeline specifications. Otherwise, inert gases will usually be left in the natural gas. Because the raw gas that is usually flared contains NGLs and carbon dioxide, it will typically have a higher overall carbon content than gas that has been processed and moved to end-use customers via transmission and distribution pipelines. #### Methodology The methodology for estimating the carbon contents of natural gas can be described in five steps. #### Step 1. Define pipeline-quality natural gas In the United States, pipeline-quality natural gas is expected to have an energy content greater than 970 Btu per cubic foot, but less than 1,100 Btu per cubic foot. Hydrogen sulfide content must be negligible. Typical pipeline-quality natural gas is about 95 percent methane, 3 percent NGLs, and 2 percent non-hydrocarbon gases, of which approximately 1 percent is carbon dioxide. However, there is a range of gas compositions that are consistent with pipeline specifications. The minimum carbon content coefficient for natural gas would match that for pure methane, which equates to an energy content of 1,005 Btu per standard cubic foot. Gas compositions with higher or lower Btu content tend to have higher carbon emissions factors, because the "low" Btu gas has a higher content of inert gases (including carbon dioxide offset with more NGLs), while "high" Btu gas tends to have more NGLs. #### Step
2. Define flared gas Every year, a certain amount of natural gas is flared in the United States. There are several reasons that gas is flared: - There may be no market for some batches of natural gas, the amount may be too small or too variable, or the quality might be too poor to justify treating the gas and transporting it to market (such is the case when gas contains large shares of carbon dioxide). All natural gas flared for these reasons is probably "rich" associated gas, with relatively high energy content, high NGL content, and a high carbon content. - Gas treatment plants may flare substantial volumes of natural gas because of "process upsets," because the gas is "off spec," or possibly as part of an emissions control system. Gas flared at processing plants may be of variable quality. Data on the energy content of flare gas, as reported by states to EIA, indicate an energy content of 1,130 Btu per standard cubic foot. Flare gas may have an even higher energy content than reported by EIA since rich associated gas can have energy contents as high as 1,300 to 1,400 Btu per cubic foot. #### Step 3. Determine a relationship between carbon content and heat content A relationship between carbon content and heat content may be used to develop a carbon content coefficient for natural gas consumed in the United States. In 1994, EIA examined the composition (and therefore ³ A term used in the gas processing industry to refer to a mixture of liquid hydrocarbons (mostly pentanes and heavier hydrocarbons) extracted from natural gas. carbon contents) of 6,743 samples of pipeline-quality natural gas from utilities and/or pipeline companies in 26 cities located in 19 states. To demonstrate that these samples were representative of actual natural gas "as consumed" in the United States, their heat content was compared to that of the national average. For the most recent year, the average heat content of natural gas consumed in the United States was 1,025 Btu per cubic foot, varying by less than 1 percent (1,025 to 1,031 Btu per cubic foot) over the past 5 years. Meanwhile, the average heat content of the 6,743 samples was 1,027 Btu per cubic foot, and the median heat content was 1,031 Btu per cubic foot. Thus, the average heat content of the sample set falls well within the typical range of natural gas consumed in the United States, suggesting that these samples continue to be representative of natural gas "as consumed" in the U.S. The average and median composition of these samples appears in Table B-4. **Table B-4. Composition of Natural Gas (Percent)** | Compound | Average | Median | |---|---------|--------| | Methane | 93.07 | 95.00 | | Ethane | 3.21 | 2.79 | | Propane | 0.59 | 0.48 | | Higher Hydrocarbons | 0.32 | 0.30 | | Non-hydrocarbons | 2.81 | 1.43 | | Higher Heating Value (Btu per cubic foot) | 1,027 | 1,032 | Source: Gas Technology Institute (1992) Carbon contents were then calculated for a series of sub samples stratified by heat content. Carbon contents were developed for eight separate sub-samples based on heat content and are shown in Table B-5. Table B-5. Carbon Content of Pipeline-Quality Natural Gas by Energy Content (Tg/QBtu) | Sample | Average Carbon Content | |---------------------------|------------------------| | GRI Full Sample | 14.51 | | Greater than 1,000 Btu | 14.47 | | 1,025 to 1,035 Btu | 14.45 | | 975 to 1,000 Btu | 14.73 | | 1,000 to 1,025 Btu | 14.43 | | 1,025 to 1,050 Btu | 14.47 | | 1,050 to 1,075 Btu | 14.58 | | 1,075 to 1,100 Btu | 14.65 | | Greater than 1,100 Btu | 14.92 | | Weighted National Average | 14.47 | Source: EIA (1994). ## Step 4. Apply carbon content coefficients developed in Step 3 to pipeline natural gas Because there is some regional variation in the energy content of natural gas consumed, a weighted national average carbon content was calculated using the average carbon contents for each sub-sample of gas that conformed with an individual state's typical cubic foot of natural gas. The result was a weighted national average of 14.47 Tg/QBtu. This was identical to the average carbon content of all samples with more than 1,000 Btu per cubic foot and the average carbon content for all samples with a heat content between 1,025 and 1,050 Btu per cubic foot. Because those samples with a heat content below 1,000 Btu had an unusually high carbon content coefficient attributable to large portions of carbon dioxide (not seen in the median sample), they were excluded so as not to bias the carbon content coefficient upwards by including them in the final sample used to select a carbon content. ## Step 5. Apply carbon content coefficients developed in Step 3 to flare gas Selecting a carbon content coefficient for flare gas was much more difficult than for pipeline natural gas because of the uncertainty of its composition and uncertainty of the combustion efficiency of the flare. Because EIA estimates the heat content of flare gas at 1,130 Btu per cubic foot, the average carbon content for samples with more than 1,100 Btu per cubic foot, 14.92 Tg/QBtu, was adopted as the coefficient for flare gas. It should be noted that the sample data set did not include any samples with more than 1,130 Btu per cubic foot. #### **Data Sources** Natural gas samples were obtained from the Gas Technology Institute (formerly Gas Research Institute) database (1992) as documented in W.E. Liss, W.H. Thrasher, G.F. Steinmetz, P. Chowdiah, and A. Atari, *Variability of Natural Gas Composition in Select Major Metropolitan Areas of the United States*. Average heat content of natural gas consumed in the United States was taken from Table A4 of EIA's *Monthly Energy Review* (2002). Data on the average heat content consumed, on a state-by-state basis, was obtained from the U.S. Department of Energy, U.S. Energy Information Administration, *State Energy Data Report 1999*, Tables 1 and 2 (2001c). Available online at <www.eia.doe.gov/emeu/sedr/contents.html#PDF%20Files>. ## Uncertainty The assignment of carbon content coefficients for natural gas, and particularly for flare gas, requires more subjective judgment than the methodology used for coal. This subjective judgment may introduce additional uncertainty. Figure B-1 shows the relationship between the calculated carbon contents for each natural gas sample and its energy content. This figure illustrates the relatively restricted range of variation in both the energy content (which varies by about 6 percent from average) and the carbon emission coefficient of natural gas (which varies by about 5 percent). Thus, the knowledge that gas has been sold via pipeline to an end-use consumer allows its carbon emission coefficient to be predicted with an accuracy of ± 5.0 percent. ## Figure B-1: Carbon Content for Samples of Pipeline-Quality Natural Gas Included in the Gas Technology Institute Database Source: EIA (1994). Natural gas suppliers may achieve the same energy contents with a wide variety of methane, higher hydrocarbon, and non-hydrocarbon gas combinations. Thus, the plot reveals large variations in carbon content for a single Btu value. In fact, the variation in carbon content for a single Btu value may be nearly as great as the variation for the whole sample. As a result, while energy content has some predictive value, the specific energy content does not substantially improve the accuracy of an estimated carbon content coefficient beyond the ± 5.0 percent offered with the knowledge that it is of pipeline-quality. The plot of carbon content also reveals other interesting anomalies. Samples with the lowest emissions coefficients tend to have energy contents of about 1,000 Btu per cubic foot. They are composed of almost pure methane. Samples with a greater proportion of NGLs (e.g., ethane, propane, and butane) tend to have energy contents greater than 1,000 Btu per cubic foot, along with higher emissions coefficients. Samples with a greater proportion of inert gases tend to have lower energy content, but they usually contain carbon dioxide as one of the inert gases and, consequently, also tend to have higher emission coefficients (see left side of Figure B-1). For the full sample (N=6,743), the average carbon content of a cubic foot of gas was 14.51 Tg/QBtu (see Table B-5). However, this average was raised by both the samples with less than 1,000 Btu per cubic foot that contain large amounts of inert carbon dioxide and those samples with more than 1,050 Btu per cubic foot that contain an unusually large amount of NGLs. Because typical gas consumed in the United States does not contain such a large amount of carbon dioxide or natural gas liquids, a weighted national average of 14.47 Tg/QBtu that represents fuels more typically consumed is used.⁴ ## Petroleum There are four critical determinants of the carbon content coefficient for a petroleum-based fuel: - The density of the fuel (e.g., the weight in kilograms of one barrel of fuel); - The fraction by mass of the product that consists of hydrocarbons, and the fraction of non-hydrocarbon impurities; - The specific types of 'families' of hydrocarbons that make up the hydrocarbon portion of the fuel; and - The heat content of the fuel. $$C_{\text{fuel}} = (D_{\text{fuel}} * S_{\text{fuel}}) / E_{\text{fuel}}$$ Where: C_{fuel} is the carbon content coefficient of the fuel; D_{fuel} is the density of the fuel; S_{fuel} is the share of the fuel that is carbon; and E_{fuel} is the heat content of the fuel. Petroleum products vary between 5.6 degrees API gravity (dense products such as asphalt and road oil) and 247 degrees (ethane).⁵ This is a range in density of 60 to 150 kilograms per barrel, or ± 50 percent. The variation in ⁴ The national average was weighted by applying the carbon content associated with the average heat content of natural gas consumed in each state by the portion of national natural gas consumption represented by that state. ⁵ API
gravity is an arbitrary scale expressing the gravity or density of liquid petroleum products, as established by the American Petroleum Institute (API). The measuring scale is calibrated in terms of degrees API. The higher the API gravity, the lighter the compound. Light crude oils generally exceed 38 degrees API and heavy crude oils are all crude oils with an API carbon content, however, is much smaller (±5 to 7 percent): ethane is 80 percent carbon by weight, while petroleum coke is 90 to 92 percent carbon. The tightly bound range of carbon contents can be explained by basic petroleum chemistry. ## **Petroleum Chemistry** Crude oil and petroleum products are typically mixtures of several hundred distinct compounds, predominantly hydrocarbons. All hydrocarbons contain hydrogen and carbon in various proportions. When crude oil is distilled into petroleum products, it is sorted into fractions by the boiling temperature of these hundreds of organic compounds. Boiling temperature is strongly correlated with the number of carbon atoms in each molecule. Petroleum products consisting of relatively simple molecules and few carbon atoms have low boiling temperatures, while larger molecules with more carbon atoms have higher boiling temperatures. Products that boil off at higher temperatures are usually more dense, which implies greater carbon content as well. Petroleum products with higher carbon contents, in general, have lower energy content per unit mass and higher energy content per unit volume than products with lower carbon contents. Empirical research led to the establishment of a set of quantitative relationships between density, energy content per unit weight and volume, and carbon and hydrogen content. Figure B-2 compares carbon content coefficients calculated on the basis of the derived formula with actual carbon content coefficients for a range of crude oils, fuel oils, petroleum products, and pure hydrocarbons. The actual fuel samples were drawn from the sources described below in the discussions of individual petroleum products. # Figure B-2. Estimated and Actual Relationships Between Petroleum Carbon Content Coefficients and Hydrocarbon Density Source: Carbon content factors for paraffins are calculated based on the properties of hydrocarbons in Guthrie (1960). Carbon content factors from other petroleum products are drawn from sources described below. Relationship between density and emission factors based on the relationship between density and energy content in DOC (1929), and relationship between energy content and fuel composition in Ringen et al. (1979). The derived empirical relationship between carbon content per unit heat and density is based on the types of hydrocarbons most frequently encountered. Actual petroleum fuels can vary from this relationship due to non-hydrocarbon impurities and variations in molecular structure among classes of hydrocarbons. In the absence of more exact information, this empirical relationship offers a good indication of carbon content. #### Non-hydrocarbon Impurities Most fuels contain a certain share of non-hydrocarbon material. This is also primarily true of crude oils and fuel oils. The most common impurity is sulfur, which typically accounts for between 0.5 and 4 percent of the mass of most crude oils, and can form an even higher percentage of heavy fuel oils. Some crude oils and fuel oils also contain appreciable quantities of oxygen and nitrogen, typically in the form of asphaltenes or various acids. The nitrogen and oxygen content of crude oils can range from near zero to a few percent by weight. Lighter petroleum products have much lower levels of impurities, because the refining process tends to concentrate all of the non-hydrocarbons in the residual oil fraction. Light products usually contain less than 0.5 percent non-hydrocarbons by mass. Thus, the carbon content of heavy fuel oils can often be several percent lower than that of lighter fuels, due entirely to the presence of non-hydrocarbons. gravity of 22 degrees or below. Intermediate crude oils fall in the range of 22 degrees to 38 degrees API gravity. API gravity can be calculated with the following formula: API Gravity = (141.5/Specific Gravity) - 131.5. Specific gravity is the density of a material relative to that of water. At standard temperature and pressure, there are 62.36 pounds of water per cubic foot, or 8.337 pounds water per gallon. #### Variations in Hydrocarbon Classes Hydrocarbons can be divided into five general categories, each with a distinctive relationship between density and carbon content and physical properties. Refiners tend to control the mix of hydrocarbon types in particular products in order to give petroleum products distinct properties. The main classes of hydrocarbons are described below. Paraffins. Paraffins are the most common constituent of crude oil, usually comprising 60 percent by mass. Paraffins are straight-chain hydrocarbons with the general formula C_nH_{2n+2} . Paraffins include ethane (C_2H_6) , propane (C_3H_8) , butane (C_4H_{10}) , and octane (C_8H_{18}) . As the chemical formula suggests, the carbon content of the paraffins increases with their carbon number: ethane is 80 percent carbon by weight, octane 84 percent. As the size of paraffin molecules increases, the carbon content approaches the limiting value of 85.7 percent asymptotically (See Figure B-3). Cycloparaffins. Cycloparaffins are similar to paraffins, except that the carbon molecules form ring structures rather than straight chains, and consequently require two fewer hydrogen molecules than paraffins. Cycloparaffins always have the general formula C_nH_{2n} and are 85.7 percent carbon by mass, regardless of molecular size. Olefins. Olefins are a reactive and unstable form of paraffin: a straight chain with the two hydrogen atoms at each end of the chain missing. They are never found in crude oil but are created in moderate quantities by the refining process. Thus, gasoline, for example, may contain 2 percent olefins. They also have the general formula C_nH_{2n} , and hence are also always 85.7 percent carbon by weight. Propylene (C_3H_6) , a common intermediate petrochemical product, is an olefin. Aromatics. Aromatics are very reactive hydrocarbons that are relatively uncommon in crude oil (10 percent or less). Light aromatics increase the octane level in gasoline, and consequently are deliberately created by steam reforming of naphtha. Aromatics also take the form of ring structures with some double bonds between carbon atoms. The most common aromatics are benzene (C_6H_6), toluene (C_7H_8), and xylene (C_8H_{10}). The general formula for aromatics is C_nH_{2n-6} . Benzene is 92 percent carbon by mass, while xylene is 90.6 percent carbon by mass. Unlike the other hydrocarbon families, the carbon content of aromatics declines asymptotically toward 85.7 percent with increasing carbon number and density. (See Figure B-3) Polynuclear Aromatics. Polynuclear aromatics are large molecules with a multiple ring structure and few hydrogen atoms, such as naphthalene ($C_{10}H_2$ and 94.4 percent carbon by mass) and anthracene ($C_{14}H_4$ and 97.7 percent carbon). They are relatively rare but do appear in heavier petroleum products. Figure B-3 illustrates the share of carbon by weight for each class of hydrocarbon. Hydrocarbon molecules containing 2 to 4 carbon atoms are all natural gas liquids; hydrocarbons with 5 to 10 carbon atoms are predominantly found in naphtha and gasoline; and hydrocarbon compounds with 12 to 20 carbons comprise "middle distillates," which are used to make diesel fuel, kerosene and jet fuel. Larger molecules are generally used as lubricants, waxes, and residual fuel oil. ## Figure B-3. Carbon Content of Pure Hydrocarbons as a Function of Carbon Number Source: Hunt (1979). If one knows nothing about the composition of a particular petroleum product, assuming that it is 85.7 percent carbon by mass is not an unreasonable first approximation. Since denser products have higher carbon numbers, this guess would be most likely to be correct for crude oils and fuel oils. The carbon content of lighter products is more affected by the shares of paraffins and aromatics in the blend. ## **Energy Content of Petroleum Products** The exact energy content (gross heat of combustion) of petroleum products is not generally known. EIA estimates energy consumption in Btu on the basis of a set of industry-standard conversion factors. These conversion factors are generally accurate to within 3 to 5 percent. #### Individual Petroleum Products The United States maintains data on the consumption of more than 20 separate petroleum products and product categories. The carbon contents, heat contents, and density for each product are provided below in Table B-6. A description of the methods and data sources for estimating the key parameters for each individual petroleum product appears below. Table B-6. Carbon Content Coefficients and Underlying Data for Petroleum Products | Fuel | 2001 Carbon Content
(Tg/QBtu) | Gross Heat of Combustion (MMBtu/Barrel) | Density
(API Gravity) | Percent
Carbon | |--------------------------|----------------------------------|---|--------------------------|-------------------| | Motor Gasoline | 19.34 | 5.253 | 59.6 | 86.60 | | LPG | 16.99 | а | а | а | | Jet Fuel | 19.33 | 5.670 | 42.0 | 86.30 | | Distillate Fuel | 19.95 | 5.825 | 35.5 | 86.34 | | Residual Fuel | 21.49 | 6.287 | 11.0 | 85.68 | | Asphalt and Road Oil | 20.62 | 6.636 | 5.6 | 83.47 | | Lubricants | 20.24 | 6.065 | 25.6 | 85.80 | | Petrochemical Feedstocks | 19.37 | 5.248 b | 67.1 b | 84.11 b | | Aviation Gas | 18.87 | 5.048 | 69.0 | 85.00 | | Kerosene | 19.72 | 5.670 | 41.4 | 86.01 | | Petroleum Coke | 27.85 | 6.024 | - | 92.28 | | Special Naphtha | 19.86 | 5.248 | 51.2 | 84.76 | | Petroleum Waxes | 19.81 | 5.537 | 43.3 | 85.29 | |
Still Gas | 17.51 | 6.000 | - | - | | Crude Oil | 20.29 | 5.800 | 30.5 | 85.49 | | Unfinished Oils | 20.29 | 5.825 | 30.5 | 85.49 | | Miscellaneous Products | 20.29 | 5.796 | 30.5 | 85.49 | | Pentanes Plus | 18.24 | 4.620 | 81.7 | 83.70 | | Natural Gasoline | 18.24 | 4.620 | 81.7 | 83.70 | a LPG is a blend of multiple paraffinic hydrocarbons: ethane, propane, isobutane, and normal butane, each with their own heat content, density and carbon content, see Table B-9. Sources: EIA (1994) and SAIC (2002). b Parameters presented are for naphthas with a boiling temperature less than 400 degrees Fahrenheit. Petrochemical feedstocks with higher boiling points are assumed to have the same characteristics as distillate fuel. ⁻ No sample data available Motor Gasoline and Motor Gasoline Blending Components Motor gasoline is a complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in spark-ignition engines.⁶ "Motor Gasoline" includes conventional gasoline; all types of oxygenated gasoline, including gasohol; and reformulated gasoline; but excludes aviation gasoline. Gasoline is the most widely used petroleum product in the United States, and its combustion accounts for nearly 20 percent of all U.S. carbon dioxide emissions. EIA collects consumption data (i.e., "petroleum products supplied" by wholesalers) for several types of gasoline: leaded regular, unleaded regular, and unleaded high octane. The American Society for Testing and Materials (ASTM) standards permit a broad range of densities for gasoline, ranging from 50 to 70 degrees API gravity, or 111.52 to 112.65 kilograms per barrel, which implies a range of possible carbon and energy contents per barrel. Table B-7 reflects changes in the density of gasoline over time and across grades of gasoline through 2001. **Table B-7. Motor Gasoline Density, 1990 – 2001 (Degrees API)** | Fuel Grade | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | |--------------|------|------|------|------|------|------|------|------|------|------|------|------| | Winter Grade | | | | | | | | | | | | | | Low Octane | 62.0 | 61.8 | 61.4 | 61.0 | 60.1 | 59.8 | 60.6 | 61.5 | 61.8 | 61.6 | 61.6 | 61.7 | | Mid Octane | 60.8 | 60.4 | 60.2 | 59.9 | 59.4 | 59.1 | 59.9 | 60.7 | 61.2 | 61.3 | 61.2 | 61.2 | | High Octane | 59.0 | 59.3 | 59.0 | 58.7 | 58.5 | 58.0 | 58.5 | 59.3 | 60 | 60.3 | 59.7 | 59.1 | | Summer Grade | | | | | | | | | | | | | | Low Octane | 58.2 | 58.0 | 57.4 | 56.1 | 55.7 | 56.1 | 56.9 | 57.1 | 57.6 | 57.7 | 56.8 | 57.2 | | Mid Octane | 57.4 | 57.1 | 56.4 | 55.5 | 54.8 | 55.6 | 56.2 | 56.6 | 56.7 | 57.4 | 58.0 | 58.0 | | High Octane | 55.5 | 55.7 | 55.6 | 54.4 | 53.8 | 55.1 | 55.3 | 56.4 | 55.7 | 57.4 | 55.8 | 55.5 | Source: National Institute of Petroleum and Energy Research (1990 through 2001). The density of motor gasoline increased across all grades through 1994, partly as a result of the leaded gasoline phase-out. In order to maintain the "anti-knock" quality and octane ratings of gasoline in the absence of lead, the portion of aromatic hydrocarbons used in gasoline increased. As discussed above, aromatic hydrocarbons have a lower ratio of hydrogen to carbon than other hydrocarbons typically found in gasoline, and therefore increase fuel density. The trend in gasoline density was reversed beginning in 1996 with the development of fuel additives that raised oxygen content. In 1995, a requirement for reformulated gasoline in non-attainment areas implemented under the Clean Air Act Amendments further changed the composition of gasoline consumed in the United States. In reformulated gasoline, methyl tertiary butyl ether (MTBE) and tertiary amyl methyl ether (TAME) are often added to standard gasoline to boost its oxygen content. The increased oxygen reduces the emissions of carbon monoxide and unburned hydrocarbons. These oxygen-rich blending components are also much lower in carbon than standard gasoline. The average gallon of reformulated gasoline consumed in 2001 contained 8 percent MTBE and 0.5 percent TAME. The characteristics of reformulated fuel additives appear in Table B-8. **Table B-8. Characteristics of Major Reformulated Fuel Additives** | Additive | Density (Degrees API) | Carbon Share (Percent) | Carbon Content (Tg/QBtu) | |----------|-----------------------|------------------------|--------------------------| | MTBE | 59.1 | 68.2 | 16.92 | | ETBE | 59.1 | 70.5 | 17.07 | | TAME | 52.8 | 70.5 | 17.00 | Source: API (1988). #### Methodology Step 1. Disaggregate U.S. gasoline consumption by grade and type U.S. gasoline consumption was divided by product grade and season for both standard gasoline and reformulated gasoline. ⁶ Motor gasoline, as defined in ASTM Specification D 4814 or Federal Specification VV-G-1690C, is characterized as having a boiling range of 122 degrees to 158 degrees Fahrenheit at the 10-percent recovery point to 365 degrees to 374 degrees Fahrenheit at the 90-percent recovery point. ## Step 2. Develop carbon content coefficients for each grade and type Carbon content coefficients for each grade and type are derived from three parameters: gasoline density, share of the gasoline mixture that is carbon; and the energy content of a gallon of gasoline. Carbon content coefficients for reformulated fuels were calculated by applying the carbon content coefficient for the fuel additives listed in Table B-8 to the increased share of reformulated gasoline represented by these additives (standard gasoline contains small amounts of MTBE and TAME) and weighting the gasoline carbon content accordingly. #### Step 3. Weight overall gasoline carbon content coefficient for consumption of each grade and type The carbon content for each grade and type of fuel is multiplied by the share of overall consumption that the grade and fuel type represent. Individual coefficients are then summed and totaled to yield an overall carbon content coefficient. #### Data Sources Data for the density of motor gasoline was obtained from the National Institute for Petroleum and Energy Research, *Motor Gasolines, Summer* and *Motor Gasolines, Winter* (1990 through 2002). Data on the characteristics of reformulated gasoline was taken from the American Petroleum Institute, *Alcohols and Ethers: A Technical Assessment of Their Applications as Fuels and Fuel Components*, API 4261 (1988). Data on the carbon content of motor gasoline was obtained from the following: - Mark DeLuchi, *Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity*, Volume 2, ANL/ESD/TM-22, Vol. 2 (November 1993), Appendix C, pp. C-1 to C-8. - Ultimate analysis of one sample of shale-oil derived gasoline from Applied Systems Corp., *Compilation of Oil Shale Test Results* (April 1976), p. 3-2. - Ultimate analysis of samples of three varieties of gasoline from C.C. Ward, "Petroleum and Other liquid Fuels," in *Marks' Standard Handbook for Mechanical Engineers* (1978), pp. 7-14. - Ultimate analysis of one sample of gasoline from J.W. Rose and J.R. Cooper, *Technical Data on Fuel*, The British National Committee, World Energy Conference, London, England (1977). Standard heat contents for motor gasoline of 5.253 MMBtu per barrel conventional gasoline and 5.150 MMBtu per barrel reformulated gasoline were adopted from EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at: www.eia.doe.gov/emeu/aer/contents.html>. #### **Uncertainty** There are two primary contributors to the uncertainty of carbon content coefficients for motor gasoline. The first is the small number of motor gasoline samples and ultimate analyses from Deluchi, et al. However, as demonstrated above in Figure B-3, the amount of variation in carbon content of gasoline is restricted by the compounds in the fuel to ± 4 percent. The second primary contributor to uncertainty is the assumed heat content. The heat contents are industry standards established many years ago. The heat contents are standard conversion factors used by EIA to convert volumetric energy data to energy units. Because the heat contents of fuels change over time, without necessarily and directly altering their volume, the conversion of known volumetric data to energy units may introduce bias. Thus, a more precise approach to estimating emissions factors would be to calculate carbon content per unit of volume, rather than per unit of energy. Adopting this approach, however, makes it difficult to compare U.S. carbon content coefficients with those of other nations. The changes in density of motor gasoline over the last decade suggest that the heat content of the fuels is also changing. However, that change within any season grade has been less than 1 percent over the decade. Of greater concern is the use of a standardized heat content across grades which show a variation in density of \pm 1.5 percent. Jet Fuel Jet fuel is a refined petroleum product used in jet aircraft engines. There are two classes of jet fuel used in the United States: "naphtha-based" jet fuels and "kerosene-based" jet fuels. In 1989, 13 percent of U.S. consumption was naphtha-based fuel, with the remainder kerosene-based jet fuel. In 1993, the U.S. Department of Defense began a conversion from naphtha-based JP-4 jet fuel to kerosene-based jet fuel, because of the possibility of increased demand for reformulated motor gasoline limiting refinery production of naphtha-based jet fuel. By 1996, naphtha-based jet fuel represented less than one-half of one percent of all jet fuel consumption. The carbon content coefficient for jet fuel used in this report represents a consumption-weighted combination of the naphtha-based and kerosene-based coefficients. #### Methodology Step 1. Estimate the carbon content for naphtha-based jet fuels Because naphtha-based jet fuels are used on a limited basis in the United States,
sample data on its characteristics are limited. The density of naphtha-based jet fuel (49 degrees) was estimated as the central point of the acceptable API gravity range published by ASTM. The heat content of the fuel was assumed to be 5.355 MMBtu per barrel based on EIA industry standards. The carbon fraction was derived from an estimated hydrogen content of 14.1 percent (Martel and Angello 1977), and an estimated content of sulfur and other non-hydrocarbons of 0.1 percent. Step 2. Estimate the carbon content for kerosene-based jet fuels The density and carbon share of kerosene-based jet fuels was based on the average composition of 39 fuel samples taken by Boeing Corporation (the leading U.S. commercial airline manufacturer) in 1989. The EIA's standard heat content of 5.67 MMBtu per barrel was adopted for kerosene-based jet fuel. Step 3. Weight the overall jet fuel carbon content coefficient for consumption of each type of fuel The carbon content for each jet fuel type is multiplied by the share of overall consumption of that fuel type. Individual coefficients are then summed and totaled to yield an overall carbon content coefficient #### Data Sources Data on the carbon content of naphtha-based jet fuel was taken from C.R. Martel and L.C. Angello, "Hydrogen Content as a Measure of the Combustion Performance of Hydrocarbon Fuels," in *Current Research in Petroleum Fuels*, Volume I (1977), p. 116. Data on the density of naphtha-based jet fuel was taken from the American Society for Testing and Materials, ASTM and Other Specifications for Petroleum Products and Lubricants (1985), p. 60. Standard heat contents for kerosene- and naphtha- based jet fuels were adopted from EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. Data on the carbon content and density of kerosene-based jet fuel was taken from O.J. Hadaller and A.M. Momenthy, *The Characteristics of Future Fuels*, Part 1, "Conventional Heat Fuels" (September 1990), pp. 46-50. #### Uncertainty Variability in jet fuel is relatively small with the average carbon share of kerosene-based jet fuel varying by less than \pm 1 percent and the density varying by \pm 1 percent. This is because the ratio of fuel mass to useful energy must be tightly bounded to maximize safety and range. There is more uncertainty associated with the density and carbon share of naphtha-based jet fuel because sample data were unavailable and default values were used. This uncertainty has only a small impact on the overall uncertainty of the carbon content coefficient for jet fuels, however, because naphtha-based jet fuel represents a small and declining share of total jet fuel consumption in the United States. #### Distillate Fuel Distillate fuel is a general classification for diesel fuels and fuel oils. Products known as No. 1, No. 2, and No. 4 diesel fuel are used in on-highway diesel engines, such as those in trucks and automobiles, as well as off- highway engines, such as those in railroad locomotives and agricultural machinery. No. 1, No. 2, and No. 4 fuel oils are also used for space heating and electric power generation. #### Methodology For the purposes of this report, the carbon content of No. 2 fuel oil is assumed to typify the carbon content of distillate fuel generally. The carbon share in No. 2 fuel oil was estimated based on the average of 11 ultimate analyses. This carbon share was combined with EIA's standard heat content of 5.825 MMBtu per barrel and the density of distillate assumed to be 35.5 degrees API, in accord with its heat content. #### Data Sources Data on the carbon contents and density was derived from four samples from C. T. Hare and R.L. Bradow, "Characterization of Heavy-Duty Diesel Gaseous and Particulate Emissions, and the Effects of Fuel Composition," in Society of Automotive Engineers, *The Measurement and Control of Diesel Particulate Emissions* (1979), p. 128. Three samples from E.F. Funkenbush, D.G. Leddy, and J.H. Johnson, "The Organization of the Soluble Organic Fraction of Diesel Particulate Matter," in Society of Automotive Engineers, *The Measurement and Control of Diesel Particulate Emissions* (1979), p. 128. One sample from R.L. Mason, "Developing Prediction Equations for Fuels and Lubricants," SAE Paper 811218, p.34 (1981). One sample from C.T. Hare, K.J. Springer, and R.L. Bradow, "Fuel and Additive Effects on Diesel Particulate- Development and Demonstration of Methodology," in Society of Automotive Engineers, *The Measurement and Control of Diesel Particulate Emissions* (1979), p. 179. One Sample from F. Black and L. High, "Methodology for Determining Particulate and Gaseous Diesel Emissions," in Society of Automotive Engineers, *The Measurement and Control of Diesel Particulate Emissions* (1979), p. 128. A standard heat content was adopted from EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. #### Uncertainty The primary source of uncertainty for the estimated carbon content of distillate fuel is the selection of No.2 fuel oil as the typical distillate fuel. No.2 fuel oil is generally consumed for home heating. No.1 fuel oil is generally less dense and if it is consumed in large portions for mobile sources, the carbon content estimated for this report is likely to be too high. The five No.1 fuel oil samples obtained by EIA contained an average of 86.01 percent carbon compared to the 86.34 percent contained in samples of No.2 fuel oil. A carbon content coefficient based on No.1 fuel oil would equal 19.72 Tg/QBtu rather than the 19.95 Tg/QBtu for No.2 fuel oil. There is also small uncertainty in the share of carbon based on the limited sample size of \pm 1 percent. #### Residual Fuel Residual fuel is a general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuel oils and lighter hydrocarbons are distilled away in refinery operations. Residual fuel conforms to ASTM Specifications D 396 and D 975 and Federal Specification VV-F-815C. No. 5, a residual fuel oil of medium viscosity, is also known as Navy Special and is defined in Military Specification MIL-F-859E, including Amendment 2 (NATO Symbol F-770). It is used in steam-powered vessels in government service and inshore power plants. No. 6 fuel oil includes Bunker C fuel oil and is used for the production of electric power, space heating, vessel bunkering, and various industrial purposes. In the United States, electric utilities purchase about a third of the residual oil consumed. A somewhat larger share is used for vessel bunkering, and the balance is used in the commercial and industrial sectors. The residual oil (defined as No.6 fuel oil) consumed by electric utilities has an energy content of 6.287 MMBtu per barrel and an average sulfur content of 1 percent (EIA 2001b). This implies a density of about 17 degrees API. ## Methodology For this report, residual fuel was defined as No.6 fuel oil. The National Institute of Petroleum and Energy Research, Fuel Oil Survey shows an average density for fuel oil of 11.3 API gravity and anecdotal evidence suggests that marine residual fuel is also very dense, with typical gravity of 10.5 to 11.5 degrees API (EIA 1993). Because the largest share of fuel oil consumption is for marine vessels, a density of 11 degrees API was adopted when developing the carbon content coefficient for this report. An average share of carbon in residual fuel of 85.67 percent by mass was used based on ultimate analyses of a dozen samples. #### Data Sources Data on carbon content was derived from three samples of residual fuel from the Middle East and one sample from Texas. These data were found in F. Mosby, G.B. Hoekstra, T.A. Kleinhenz, and J.M. Sokra, "Pilot Plant Proves Resid Process," in *Chemistry of Petroleum Processing and Extraction* (1976), p.227. Three samples of heavy fuel oils from J.P. Longwell, "Interface Between Fuels and Combustion," in *Fossil Fuel Combustion: A Sourcebook* (1991). Three samples of heavy fuel oils from C.C. Ward, "Petroleum and Other Liquid Fuels," in *Marks' Standard Handbook for Mechanical Engineers* (1978), pp. 7-14. Two samples of heavy fuel oils from, D.A. Vorum, "Fuel and Synthesis Gases from Gaseous and Liquid Hydrocarbons," in American Gas Association, *Gas Engineer's Handbook* (1974), p. 3/71. One sample of heavy fuel oil from W. Rose and J.R. Cooper, *Technical Data on Fuel*, The British National Committee, World Energy Conference, London, England (1977). Density of residual fuel consumed for electric power generation was obtained from EIA's *Cost and Quality of Fuels*, (2001b). Available online at <www.eia.doe.gov/cneaf/electricity/cq/cq_sum.html>. Density of residual fuel consumed in marine vessels from EIA's Petroleum Supply Division, *Btu Tax on Finished Petroleum Products* (1993) and National Institute for Petroleum and Energy Research's *Fuel Oil Surveys* (1992). A standard heat content was adopted from EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. #### Uncertainty The largest source of uncertainty for estimating the carbon content of residual fuel centers on the estimates of density, which differ from power generation to marine vessel fuels. The difference between the density implied by the energy content of utility fuels and the density observed in the NIPER surveys is probably due to nonsulfur impurities, which reduce the energy content without greatly affecting the density of the product. Impurities of several percent are commonly observed in residual oil. The presence of these impurities also affects the share of the fuel that is carbon. Overall, the uncertainty associated with the carbon content of residual fuel is probably \pm 1 percent. #### Liquefied Petroleum Gases (LPG) EIA identifies four categories of paraffinic hydrocarbons as LPG: ethane,
propane, isobutane, and n-butane. Because each of these compounds is a pure paraffinic hydrocarbon, their carbon shares are easily derived by taking into account the atomic weight of carbon (12) and the atomic weight of hydrogen (1). Thus, for example, the carbon share of propane, C₃H₈, is 81.8 percent. The densities and heat content of the compounds are also well known allowing carbon content coefficients to be calculated directly. Table B-9 summarizes the physical characteristic of LPG. Table B-9. Physical Characteristics of Liquefied Petroleum Gases | Compound | Chemical
Formula | Density (Barrels
Per Metric Ton) | Carbon Content
(Percent) | Energy Content (MMBtu/Barrel) | Carbon Content
Coefficient (Tg/QBtu) | |-----------|--------------------------------|-------------------------------------|-----------------------------|-------------------------------|---| | Ethane | C ₂ H ₆ | 16.88 | 80.0 | 2.916 | 16.25 | | Propane | C ₃ H ₈ | 12.44 | 81.8 | 3.824 | 17.20 | | Isobutane | C ₄ H ₁₀ | 11.20 | 82.8 | 4.162 | 17.75 | | n-butane | C ₄ H ₁₀ | 10.79 | 82.8 | 4.328 | 17.72 | Source: Guthrie (1960). #### Methodology Step 1. Assign carbon content coefficients to each pure paraffinic compound Based on their known physical characteristics, a carbon content coefficient is assigned to each compound contained in the U.S. energy statistics category, Liquefied Petroleum Gases. Step 2. Weight individual LPG coefficients for share of fuel use consumption A carbon content coefficient for LPG used as fuel is developed based on the consumption mix of the individual compound reported in U.S. energy statistics. Step 3. Weight individual LPG coefficients for share of non-fuel use consumption The mix of LPG consumed for non-fuel use differs significantly from the mix of LPG that is combusted. While the majority of LPG consumed for fuel use is propane, ethane is the largest component of LPG used for non-fuel applications. A carbon content coefficient for LPG used for non-fuel applications is developed based on the consumption mix of the individual compound reported in U.S. energy statistics. Step 4. Weight the carbon content coefficients for fuel use and non-fuel use by their respective shares of consumption The changing shares of LPG fuel use and non-fuel use consumption appear below in Table B-10. Table B-10. Consumption and Carbon Content Coefficients of Liquefied Petroleum Gases, 1990-2001 (Tg/QBtu) | | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | |----------------------------|------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Consumption (Qua | ds Fuel Us | se) | | | | | | | | | | | | Ethane . ` | 0.03 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.05 | 0.05 | 0.06 | 0.06 | 0.05 | | Propane | 0.79 | 0.79 | 0.84 | 0.86 | 0.86 | 0.86 | 0.95 | 0.92 | 0.98 | 0.98 | 0.98 | 0.89 | | Butane | 0.08 | 0.05 | 0.07 | 0.06 | 0.07 | 0.05 | 0.04 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | | Total | 0.90 | 0.85 | 0.94 | 0.94 | 0.96 | 0.93 | 1.02 | 1.03 | 0.99 | 1.10 | 1.10 | 1.01 | | Carbon Content | 17.21 | 7.21 | 17.21 | 17.22 | 17.22 | 17.20 | 17.20 | 17.18 | 17.18 | 17.18 | 17.18 | 17.18 | | Consumption (Qua | ds non-Fu | el Use) | | | | | | | | | | | | Ethane | 0.55 | 0.62 | 0.62 | 0.65 | 0.65 | 0.68 | 0.74 | 0.71 | 0.68 | 0.77 | 0.81 | 0.73 | | Propane | 0.53 | 0.59 | 0.61 | 0.55 | 0.65 | 0.67 | 0.65 | 0.71 | 0.68 | 0.76 | 0.76 | 0.69 | | Butane | 0.13 | 0.17 | 0.16 | 0.15 | 0.25 | 0.24 | 0.26 | 0.25 | 0.24 | 0.28 | 0.29 | 0.27 | | Total | 1.20 | 1.38 | 1.39 | 1.35 | 1.55 | 1.59 | 1.65 | 1.67 | 1.60 | 1.81 | 1.86 | 1.69 | | Carbon Content | 16.83 | 16.84 | 16.84 | 16.80 | 16.88 | 16.87 | 16.86 | 16.88 | 16.87 | 16.88 | 16.87 | 16.88 | | Weighted Carbon
Content | 16.99 | 16.98 | 16.99 | 16.97 | 17.01 | 17.00 | 16.99 | 16.99 | 16.99 | 16.99 | 16.99 | 16.99 | Sources: Consumption of LPG from EIA (1995 through 2001). Non-fuel use of LPG from API (1990 through 2001). #### **Data Sources** Data on carbon share, density, and heat content of LPG was obtained from V.B. Guthrie (ed.), *Characteristics of Compounds*, Petroleum Products Handbook, (1960), p.3-3. Data on LPG consumption was obtained from U.S. Department of Energy, Energy Information Administration, *Petroleum Supply Annual* (1990 through 2002). Available online at www.eia.doe.gov/oil gas/petroleum/data publications/petroleum supply annual/psa volume1/psa volume1.html. Non-fuel use of LPG from American Petroleum Institute, Natural Gas Liquids and Liquefied Refinery Gas Survey (1990 through 2002). ## **Uncertainty** Because LPG consists of pure paraffinic compounds whose density, heat content and carbon share are physical constants, there is limited uncertainty associated with the carbon content coefficient for this petroleum product. Any uncertainty is associated with the collection of consumption data and non-fuel data in U.S. energy statistics. This uncertainty is probably less than ± 3 percent. #### Aviation Gasoline Aviation gasoline is used in piston-powered airplane engines. It is a complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Aviation gas is a relatively minor contributor to greenhouse gas emissions compared to other petroleum products, representing approximately 0.1 percent of all consumption. The ASTM standards for boiling and freezing points in aviation gasoline effectively limit the aromatics content to a maximum of 25 percent (ASTM D910). Because weight is critical in the operation of an airplane, aviation gas must have as many Btu per pound (implying a lower density) as possible, given other requirements of piston engines such as high anti-knock quality. #### Methodology A carbon content coefficient for aviation gasoline was calculated on the basis of the EIA standard heat content of 5.048 MMBtu per barrel. This implies a density of approximately 69 degrees API gravity or 5.884 pounds per gallon. To estimate the share of carbon in the fuel, it was assumed that aviation gasoline is 87.5 percent iso-octane, 9.0 percent toluene, and 3.5 percent xylene. The maximum allowable sulfur content in aviation gasoline is 0.05 percent, and the maximum allowable lead content is 0.1 percent. These amounts were judged negligible and excluded for the purposes of this analysis. This yielded a carbon share of 85 percent and a carbon content coefficient of 18.87 Tg/QBtu. #### Data Sources Data sources include American Society for Testing and Materials, ASTM and Other Specifications for Petroleum Products and Lubricants (1985). A standard heat content for aviation gas was adopted from EIA's *Annual Energy Review 2000*, Appendix A (July 2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. #### Uncertainty The uncertainty associated with the carbon content coefficient for aviation gasoline is larger than that for other liquid petroleum products examined because no ultimate analyses of samples are available. Given the requirements for safe operation of piston-powered aircraft the composition of aviation gas is well bounded and the uncertainty of the carbon content coefficient is likely to be \pm 5 percent. #### Still Gas Still gas, or refinery gas is composed of light hydrocarbon gases that are released as petroleum is processed in a refinery. The composition of still gas is highly variable, depending primarily on the nature of the refining process and secondarily on the composition of the product being processed. Petroleum refineries produce still gas from many different processes. Still gas can be used as a fuel or feedstock within the refinery, sold as a petrochemical feedstock, or purified and sold as pipeline-quality natural gas. In general, still gas tends to include large amounts of free hydrogen and methane, as well as smaller amounts of heavier hydrocarbons. Because different refinery operations result in different gaseous byproducts, it is difficult to determine what represents typical still gas. #### Methodology The EIA obtained data on four samples of still gas. Table B-11 below shows the composition of those samples. Table B-11. Composition, Energy Content, and Carbon Content Coefficient for Four Samples of Still Gas | Sample | Hydrogen | Methane | Ethane | Propane | Btu Per Cubic | Carbon Content | |--------|----------|---------|--------|---------|---------------|----------------| | - | (%) | (%) | (%) | (%) | Foot | (Tg/QBtu) | | One | 12.7 | 28.1 | 17.1 | 11.9 | 1,388 | 17.51 | | Two | 34.7 | 20.5 | 20.5 | 6.7 | 1,143 | 14.33 | | Three | 72.0 | 12.8 | 10.3 | 3.8 | 672 | 10.23 | | Four | 17.0 | 31.0 | 16.2 | 2.4 | 1,100 | 15.99 | Because gas streams with a large free hydrogen content are likely to be used as refinery or chemical feedstocks, EIA selected the carbon content coefficient from the sample with the lowest hydrogen content as the representative value for still gas. #### **Data Sources** One still gas sample from American Gas Association, Gas Engineer's Handbook (1974), pp. 3/71, 3.87. Three still gas samples from C.R. Guerra, K. Kelton, and D.C. Nielsen, Natural Gas Supplementation with Refinery Gases and Hydrogen," in Institute of Gas Technology, *New Fuels and Advances in Combustion Technologies* (1979). #### **Uncertainty** Because the composition of still gas is highly heterogeneous, the carbon content coefficient for this product is highly uncertain, with an accuracy of \pm 33 percent. The carbon content coefficient used for this report is probably at the high end of the plausible range. #### **Asphalt** Asphalt is used to pave roads. Because most of its carbon is retained in those roads, it is a small source of emissions. It is derived from a class of hydrocarbons called
"asphaltenes," abundant in some crude oils but not in others. Asphaltenes have oxygen and nitrogen atoms bound into their molecular structure, so that they tend to have lower carbon contents than other hydrocarbons. #### **Methodology** Ultimate analyses of twelve samples of asphalts showed an average carbon content of 83.5 percent. The EIA standard Btu content for asphalt of 6.636 MMBtu per barrel was assumed. The ASTM petroleum measurement tables show a density of 5.6 degrees API or 8.605 pounds per gallon for asphalt. Together, these variables generate carbon content coefficient of 20.62 Tg/QBtu. ## **Data Sources** A standard heat content for asphalt was adopted from EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. The density of asphalt was determined by the American Society for Testing and Materials, in ASTM and Other Specifications for Petroleum Products and Lubricants (1985). ## Uncertainty The share of carbon in asphalt ranges from 79 to 88 percent by weight. Also present in the mixture arehydrogen and sulfur, with shares by weight ranging from seven to 13 percent for hydrogen, and from trace levels to eight percent for sulfur. Because carbon share and total heat content in asphalts do vary systematically, the overall carbon content coefficient is likely to be accurate to \pm 5 percent. #### Lubricants Lubricants are substances used to reduce friction between bearing surfaces, or incorporated into processing materials used in the manufacture of other products, or used as carriers of other materials. Petroleum lubricants may be produced either from distillates or residues. Lubricants include all grades of lubricating oils, from spindle oil to cylinder oil to those used in greases. Lubricant consumption is dominated by motor oil for automobiles, but there is a large range of product compositions and end uses within this category. #### Methodology The ASTM Petroleum Measurement tables give the density of lubricants at 25.6 degrees API. Ultimate analysis of a single sample of motor oil yielded a carbon content of 85.8 percent. A standard heat content of 6.065 MMBtu per barrel was adopted from EIA. These factors produce a carbon content coefficient of 20.24 Tg/QBtu. ## Data Sources A standard heat content was adopted from the EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. The density of asphalt was determined by the American Society for Testing and Materials in ASTM and Other Specifications for Petroleum Products and Lubricants (1985). #### Uncertainty Uncertainty in the estimated carbon content coefficient for lubricants is driven by the large range of product compositions and end uses in this category combined with an inability to establish the shares of the various products captured under this category in U.S. energy statistics. Because lubricants may be produced from either the distillate or residual fractions during refineries, the possible carbon content coefficients range from just under 20.0 Tg/QBtu to about 21.5 Tg/OBtu or an uncertainty band from -1 percent to +6 percent of the estimated value. #### Petrochemical Feedstocks U.S. energy statistics distinguish between two different kinds of petrochemical feedstocks: those with a boiling temperature below 400 degrees Fahrenheit, generally called "naphtha," and those with a boiling temperature 400 degrees Fahrenheit and above. ## Methodology The method for estimating the carbon content of petrochemical feedstocks includes three steps. Step 1. Estimate the carbon content coefficient for naphtha Because reformed naphtha is used to make motor gasoline (hydrogen is released to raise aromatics content and octane rating), "straight-run" naphtha is assumed to be used as a petrochemical feedstock. Ultimate analyses of five samples of naphtha were examined and showed an average carbon share of 84.11 percent and an average density of 67.1 degrees API gravity. The standard EIA heat content of 5.248 MMBtu per barrel is used to estimate a carbon content coefficient of 18.14 Tg/QBtu. Step 2. Estimate the carbon content coefficient for petrochemical feedstocks with a boiling temperature 400 degrees Fahrenheit and above The boiling temperature of this product places it into the "middle distillate" fraction in the refining process, and EIA estimates that these petrochemical feedstocks have the same heat content as distillate fuel. Thus, the carbon content coefficient of 19.95 Tg/Btu used for distillate fuel is also adopted for this portion of petrochemical feedstocks. Step 3. Weight the carbon content coefficients for the two classes of petrochemical feedstock by consumption The weighted average of the two carbon content coefficients for petroleum feedstocks equals 19.37 Tg/Btu. #### **Data Sources** Data on the carbon content and density of naphtha was taken from G.H. Unzelman, "A Sticky Point for Refiners: FCC Gasoline and the Complex Model," *Fuel Reformulation* (July/August 1992), p. 29. A standard heat content for petrochemical feedstock was adopted from EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. #### Uncertainty Petrochemical feedstocks are not so much distinguished on the basis of chemical composition as on the identity of the purchaser, who may be presumed to be a chemical company or a petrochemical unit co-located on the refinery grounds. This produces a considerable degree of uncertainty about the exact composition of petrochemical feedstocks. Since the carbon content coefficient for petrochemical feedstocks is a weighted average of the coefficients for naphtha and some class of middle distillates, the accurate coefficient is likely bounded by the two individual coefficients, suggesting an uncertainty of \pm 6 percent. #### Kerosene A light petroleum distillate that is used in space heaters, cook stoves, and water heaters and is suitable for use as a light source when burned in wick-fed lamps, kerosene is drawn from the same petroleum fraction as jet fuel. Kerosene is generally comparable to No.1 fuel oil. #### Methodology The average density of 41.4 degrees API and average carbon share of 86.01 percent found in five ultimate analyses of No. 1 fuel oil samples were applied to a standard heat content of 5.67 MMBtu per barrel to yield a carbon content coefficient of 19.72 Tg/Btu. #### Data Sources A standard heat content was adopted from EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. #### Uncertainty Uncertainty in the estimated carbon content for kerosene is driven by the selection of No. 1 fuel oil as a proxy for kerosene. If kerosene is more like kerosene-based jet fuel, the true carbon content coefficient is likely to be some 2 percent lower. If kerosene is more aptly compared to No. 2 fuel oil, then the true carbon content coefficient is likely to be about 1 percent higher. #### Petroleum Coke Petroleum coke is the solid residue by-product of the extensive processing of crude oil. It is a coal-like solid, usually with a carbon content greater than 90 percent, that is used as a boiler fuel and industrial raw material. #### Methodology Ultimate analyses of two samples of petroleum coke showed an average carbon share of 92.3 percent. The ASTM standard density of 9.543 pounds per gallon was adopted and the EIA standard energy content of 6.024 MMBtu per barrel assumed. Together, these factors produced an estimated carbon content coefficient of 27.85 Tg/QBtu. #### **Data Sources** Carbon content was derived from two samples from S. W. Martin, "Petroleum Coke," in Virgil Guthrie (ed.), *Petroleum Processing Handbook* (1960), pp. 14-15. The density of petroleum coke was taken from the American Society for Testing and Materials, *ASTM and Other Specifications for Petroleum Products and Lubricants* (1985). A standard heat content for petroleum coke was adopted from EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. #### Uncertainty The uncertainty associated with the estimated carbon content coefficient of petroleum coke can be traced to two factors: the use of only two samples to establish carbon contents and a standard heat content which may be too low. Together, these uncertainties are likely to bias the carbon content coefficient upwards by as much as 6 percent. #### Special Naphtha Special naphtha is defined as a light petroleum product to be used for solvent applications, including commercial hexane and four classes of solvent: stoddard solvent, used in dry cleaning; high flash point solvent, used as an industrial paint because of its slow evaporative characteristics; odorless solvent, most often used for residential paints; and high solvency mineral spirits, used for architectural finishes. These products differ in both density and carbon percentage, requiring the development of multiple coefficients. #### Methodology The method for estimating the carbon content coefficient of special naphtha includes three steps. ## Step 1. Estimate the carbon content coefficient for hexane Hexane is a pure paraffin containing 6 carbon atoms and 14 hydrogen atoms. Thus, it is 83.7 percent carbon. Its density is 76.6 degrees API or 5.649 pounds per gallon and its derived carbon content coefficient is 17.17 Tg/QBtu. #### Step 2. Estimate the carbon contents of non-hexane special naphthas The hydrocarbon compounds in special naphthas are assumed to be either paraffinic or aromatic (see discussion above). The portion of aromatics in odorless solvents is estimated at less than 1 percent, Stoddard and high flash point solvents contain 15 percent aromatics and high solvency mineral spirits contain 30 percent aromatics (Boldt and Hall, 1977). These assumptions, when combined with the relevant densities, yield the carbon content factors
contained in Table B-12 below. Table B-12. Characteristics of Non-hexane Special Naphthas | Special Naphtha | Aromatic Content (Percent) | Density
(Degrees API) | Carbon Content
(Percent) | Carbon Content
(Tg/Btu) | |------------------|----------------------------|--------------------------|-----------------------------|----------------------------| | Odorless Solvent | 1 | 55.0 | 84.51 | 19.41 | | Stoddard Solvent | 15 | 47.9 | 84.44 | 20.11 | | High Flash Point | 15 | 47.6 | 84.70 | 20.17 | | Mineral Spirits | 30 | 43.6 | 85.83 | 20.99 | Step 3. Develop weighted carbon content coefficient based on consumption of each special naphtha EIA reports only a single consumption figure for special naphtha. The carbon contents of the five special naphthas are weighted according to the following formula: approximately 10 percent of all special naphtha consumed is hexane; the remaining 90 percent is assumed to be distributed evenly among the four other solvents. The resulting emissions coefficient for special naphthas is 19.86 Tg/QBtu. #### **Data Sources** A standard heat content for special naphtha was adopted from EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. Density and aromatic contents were adopted from K. Boldt and B.R. Hall, Significance of Tests for Petroleum Products, American Society for Testing and Materials (1977), p. 30. #### Uncertainty The principal uncertainty associated with the estimated carbon content coefficient for special naphtha is the allocation of overall consumption across individual solvents. The overall uncertainty is bounded on the low end by the carbon content of hexane and on the upper end by the carbon content of high solvency mineral spirits. This implies an uncertainty band of -15 percent to +6 percent. #### Petroleum Waxes The ASTM standards define petroleum wax as a product separated from petroleum that is solid or semi-solid at 77 degrees Fahrenheit (25 degrees Celsius). The two classes of petroleum wax are paraffin waxes and microcrystalline waxes. They differ in the number of carbon atoms and the type of hydrocarbon compounds. Microcrystalline waxes have longer carbon chains and more variation in their chemical bonds than paraffin waxes. #### **Methodology** The method for estimating the carbon content coefficient for petroleum waxes includes three steps. Step 1. Estimate the carbon content of paraffin waxes For the purposes of this analysis, paraffin waxes are assumed to be composed of 100 percent paraffinic compounds with a chain of 25 carbon atoms. The resulting carbon share for paraffinic wax is 85.23 percent and the density is estimated at 45 degrees API or 6.684 pounds per gallon. Step 2. Estimate the carbon content of microcrystalline waxes Microcrystalline waxes are assumed to consist of 50 percent paraffinic and 50 percent cycloparaffinic compounds with a chain of 40 carbon atoms, yielding a carbon share of 85.56 percent. The density of microcrystalline waxes is estimated at 36.7 degrees API, based on a sample of 10 microcrystalline waxes found in the *Petroleum Products Handbook*. Step 3. Develop a carbon content coefficient for petroleum waxes by weighting the density and carbon content of paraffinic and microcrystalline waxes A weighted average density and carbon content was calculated for petroleum waxes, assuming that wax consumption is 80 percent paraffin wax and 20 percent microcrystalline wax. The weighted average carbon content is 85.29 percent, and the weighted average density is 6.75 pounds per gallon. EIA's standard heat content for waxes is 5.537 MMBtu per barrel. These inputs yield a carbon content coefficient for petroleum waxes of 19.81 Tg/QBtu. #### Data Sources Density of paraffin wax was taken from American Society for Testing and Materials, ASTM and Other Specifications for Petroleum Products and Lubricants (1985). Density of microcrystalline waxes was derived from 10 samples found in V. Guthrie (ed.), *Petroleum Products Handbook* (1960). A standard heat content for petroleum waxes was adopted from EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. #### Uncertainty Although there is considerable qualitative uncertainty associated with the allocation of petroleum waxes and microcrystalline waxes, the quantitative variation in the carbon contents for all waxes is limited to \pm 1 percent because of the nearly uniform relationship between carbon and other elements in petroleum waxes broadly defined. #### Crude Oil, Unfinished Oils, and Miscellaneous U.S. energy statistics include several categories of petroleum products designed to ensure that reported refinery accounts "balance" and cover any "loopholes" in the taxonomy of petroleum products. These categories include crude oil, unfinished oils, and miscellaneous products. Crude oil is rarely consumed directly, miscellaneous products account for less than one percent of oil consumption and unfinished oils are a balancing item that may show negative consumption. For carbon accounting purposes, it was assumed that all these products have the same carbon content as crude oil. ## Methodology EIA reports on the average density and sulfur content of U.S. crude oil purchased by refineries. To develop a method of estimating carbon content based on this information, ultimate analyses of 182 crude oil samples were collected. Within the sample set, carbon content ranged from 82 to 88 percent carbon, but almost all samples fell between 84 percent and 86 percent carbon. The density and sulfur content of the crude oil data were regressed on the carbon content, producing the following equation: $$Percent \ Carbon = 76.99 + (10.19 * Specific \ Gravity) + (-0.76 * Sulfur \ Content)$$ Absent the term representing sulfur content, the equation had an R-squared of only 0.35.7 When carbon content was adjusted to exclude sulfur, the R-squared rose to 0.65. While sulfur is the most important nonhydrocarbon impurity, nitrogen and oxygen can also be significant, but they do not seem to be correlated with either density or sulfur content. Restating these results, density accounts for about 35 percent of the variation in carbon content, impurities account for about 30 percent of the variation, and the remaining 35 percent is accounted for by other factors, including (presumably) the degree to which aromatics and polynuclear aromatics are present in the crude oil. Applying this equation to the 2001 crude oil quality data (30.49 degrees API and 1.42 percent sulfur) produces an estimated carbon content of 85.81 percent. Applying the density and carbon content to the EIA standard energy content for crude oil of 5.8 MMBtu per barrel produced an emissions coefficient of 20.29 Tg/QBtu. ⁷ R-squared represents the percentage of variation in the dependent variable (in this case carbon content) explained by variation in the independent variables. ## Data Sources Carbon content was derived from 150 crude oil samples from U.S. National Research Council, *International Critical Tables of Numerical Data, Physics, Chemistry, and Technology* (1927). A standard heat content for crude oil was adopted from the EIA's *Annual Energy Review 2000*, Appendix A (2001). Available online at <www.eia.doe.gov/emeu/aer/contents.html>. #### Uncertainty The uncertainty of the estimated carbon content for crude oil centers on the 35 percent of variation that cannot be explained by density and sulfur content. This variation is likely to alter the carbon content coefficient by \pm 3 percent. Since unfinished oils and miscellaneous products are impossible to define, the uncertainty of applying a crude oil carbon content is likely to be bounded by the range of petroleum products described in this chapter at \pm 10 percent. ## Chronology and Explanation of Changes in Individual Carbon Content Coefficients of Fossil Fuels #### Coal The estimates of carbon content coefficients for coal were updated and revised in 2002. The methodology employed for these estimates was unchanged from previous years; however, the underlying coal data sample set was updated. Previously a set of 5,426 coal samples from the EIA Coal Analysis File was used to develop carbon content estimates. The results from that sample set appear below in Table B-13. The EIA Coal Analysis File was originally developed by the U.S. Bureau of Mines and contained over 60,000 coal samples obtained through numerous coal seams throughout the United States. Many of the samples were collected starting in the 1940s and 1950s through the 1980s and analyzed in U.S. government laboratories. The updated sample set included 6,588 coal samples collected by the U.S. Geological Survey between 1973 and 1989. Table B-13. Carbon Content Coefficients for Coal by Consuming Sector and Coal Rank, 1990-2000 (Tg/QBtu) | Consuming Sector | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | |------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Electric Power | 25.68 | 25.69 | 25.69 | 26.71 | 25.72 | 25.74 | 25.74 | 25.76 | 25.76 | 25.76 | 25.76 | | Industrial Coking | 25.51 | 25.51 | 25.51 | 25.51 | 25.52 | 25.53 | 25.55 | 25.56 | 25.56 | 25.56 | 25.56 | | Other Industrial | 25.58 | 25.59 | 25.62 | 25.61 | 25.63 | 25.63 | 25.61 | 25.63 | 25.63 | 25.63 | 25.63 | | Residential/Commercial | 25.92 | 26.00 | 26.13 | 25.97 | 25.95 | 26.00 | 25.92 | 26.00 | 26.00 | 26.00 | 26.00 | | Coal Rank | | | | | | | | | | | | | Anthracite | 28.13 | 28.13 | 28.13 | 28.13 | 28.13 | 28.13 | 28.13 | 28.13 | 28.13 | 28.13 | 28.13 | | Bituminous | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 | | Sub-bituminous | 26.24 | 26.24 | 26.24 | 26.24 | 26.24 | 26.24 | 26.24 | 26.24 | 26.24 | 26.24 | 26.24 | | Lignite | 26.62 | 26.62 | 26.62 | 26.62 | 26.62 | 26.62 | 26.62 | 26.62 | 26.62 |
26.62 | 26.62 | Sources: Emission factors by consuming sector from Hong and Slatnick (1994) and emission factors by rank from SAIC (1992). #### **Petroleum Products** #### Jet Fuel Between 1994 and 1995, the carbon content coefficient for kerosene-based jet fuel was revised downward from 19.71 Tg/QBtu to 19.33 Tg/QBtu. This downward revision was the result of a shift in the sample set used from one collected between 1959 and 1972 and reported on by Martel and Angello in 1977 to one collected by Boeing in 1989 and published by Hadaller and Momenthy in 1990. The downward revision was a result of a decrease in density, as well as slightly lower carbon shares than in the earlier samples. However, the assumed heat content is unchanged because it is based on an EIA standard and probably yields a downward bias in the revised carbon content coefficient. ## Liquefied Petroleum Gases (LPG) The carbon content coefficient of LPG is updated annually to reflect changes in the consumption mix of the underlying compounds: ethane; propane; isobutane; and normal butane. In 1994, EIA included pentanes plus— assumed to have the characteristics of hexane—in the mix of compounds broadly described as LPG. In 1995, EIA removed pentanes plus from this fuel category. Because pentanes plus is relatively rich in carbon per unit of energy, its removal from the consumption mix lowered the carbon content coefficient for LPG from 17.26 Tg/QBtu to 17.02 Tg/QBtu. In 1998, EIA began separating LPG consumption into two categories: energy use and non-fuel use and providing individual coefficients for each. Because LPG for fuel use typically contains higher proportions of propane than LPG for non-fuel use, the carbon content coefficient for fuel use is about 2 percent higher than the coefficient for non-fuel use. #### Motor Gasoline The carbon content coefficient for motor gasoline varies annually based on the density of and proportion of additives in a representative sample of motor gasoline examined each year. However, in 1997 EIA began incorporating the effects of the introduction of reformulated gasoline into its estimate of carbon content coefficients for motor gasoline. This change resulted in a downward step function in carbon content coefficients for gasoline of approximately 0.3 percent beginning in 1995. ## References American Gas Association (1974) Gas Engineer's Handbook, New York, NY, Industrial Press, pp. 3/71, 3.87. API (1990 through 2001) Sales of Natural Gas Liquids and Liquefied Refinery Gases, American Petroleum Institute. API (1988) Alcohols and Ethers: A Technical Assessment of Their Applications as Fuels and Fuel Components, American Petroleum Institute, API 4261. Applied Systems Corporation (1976) *Compilation of Oil Shale Test Results*, submitted to the Office of Naval Research, April 1976, p. 3-2. ASTM (1985) ASTM and Other Specifications for Petroleum Products and Lubricants, American Society for Testing and Materials. Philadelphia, PA. Black, F. and L. High (1979) "Methodology for Determining Particulate and Gaseous Diesel Emissions," in, *The Measurement and Control of Diesel Particulate Emissions*, Society of Automotive Engineers, p. 128. Boldt, K. and B.R. Hall (1977) *Significance of Tests for Petroleum Products*, Philadelphia, PA, American Society for Testing and Materials, p. 30. C.R. Martel and L.C. Angello (1977) "Hydrogen Content as a Measure of the Combustion Performance of Hydrocarbon Fuels," in *Current Research in Petroleum Fuels*, Volume I. New York, NY, MSS Information Company, p. 116. DeLuchi (1993) *Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity*, Volume 2, ANL/ESD/TM-22, Vol. 2. Chicago, IL, Argonne National Laboratory. Appendix C, pp. C-1 to C-8. DOC (1929) *Thermal Properties of Petroleum Products*, U.S. Department of Commerce, National Bureau of Standards. Washington, DC. pp.16-21. EIA (1995 through 2001) *Petroleum Supply Annual*, Energy Information Administration, U.S. Department of Energy, Washington, DC. EIA (1993) Btu Tax on Finished Petroleum Products, Energy Information Administration, Petroleum Supply Division (unpublished manuscript, April 1993). EIA (1994) *Emissions of Greenhouse Gases in the United States 1987-1992*, Energy Information Administration, U.S. Department of Energy. Washington, DC. November, 1994. DOE/EIA 0573. EIA (2001a) *Annual Energy Review 2000*, Appendix A and other sections, Energy Information Administration. Washington, DC. July 2001. Available online at <www.eia.doe.gov/emeu/aer/contents.html>. EIA (2001b) *Cost and Quality of Fuels for Electric Utility Plants 2000*, Energy Information Administration. Washington, DC. August 2001. Available online at <www.eia.doe.gov/cneaf/electricity/cq/cq sum.html>. EIA (2001c) *State Energy Data Report 1999*, Energy Information Administration, U.S. Department of Energy, Washington, DC. August 2001. Available online at www.eia.doe.gov/emeu/sedr>. EIA (2002a) Coal Industry Annual, U.S. Department of Energy, Energy Information Administration. Washington, DC. EIA (2002b) *Monthly Energy Review*, Energy Information Administration, U.S. Department of Energy, Washington, DC. Available on the Internet at <www.eia.doe.gov/emeu/mer>. Funkenbush, E.F., D.G. Leddy, and J.H. Johnson (1979) "The Organization of the Soluble Organic Fraction of Diesel Particulate Matter," in Society of Automotive Engineers, *The Measurement and Control of Diesel Particulate Emissions*, p. 128. Gas Technology Institute (1992) Database as documented in W.E. Liss, W.H. Thrasher, G.F. Steinmetz, P. Chowdiah, and A. Atari, *Variability of Natural Gas Composition in Select Major Metropolitan Areas of the United States*. GRI-92/0123. March 1992. Guerra, C.R., K. Kelton, and DC Nielsen (1979) "Natural Gas Supplementation with Refinery Gases and Hydrogen," in Institute of Gas Technology, *New Fuels and Advances in Combustion Technologies*. Chicago, IL, June 1979. Guthrie, V. (ed.) (1960) Petroleum Products Handbook. New York, NY, McGraw-Hill. Hadaller, O.J. and A.M. Momenthy (1990) *The Characteristics of Future Fuels*, Part 1, "Conventional Heat Fuels". Seattle, WA, Boeing Corp. September 1990. pp. 46-50. Hare, C.T. and R.L. Bradow (1979) "Characterization of Heavy-Duty Diesel Gaseous and Particulate Emissions, and the Effects of Fuel Composition," in Society of Automotive Engineers, *The Measurement and Control of Diesel Particulate Emissions*, p. 128. Hare, C.T., K.J. Springer, and R.L. Bradow (1979) "Fuel and Additive Effects on Diesel Particulate- Development and Demonstration of Methodology," in Society of Automotive Engineers, *The Measurement and Control of Diesel Particulate Emissions*, p. 179. Hong, B.D. and E.R. Slatnick (1994) "Carbon Dioxide Emission Factors for Coal, "U.S. Energy Information Administration, *Quarterly Coal Report, January-March 1994*. Washington, DC. Hunt, J.M. (1979) Petroleum Geochemistry and Geology. San Francisco, CA. W.H. Freeman and Company. pp. 31-37. Longwell, J.P. (1991) "Interface Between Fuels and Combustion," in *Fossil Fuel Combustion: A Sourcebook*, New York, NY, John Wiley & Sons. Martin, S.W. (1960) "Petroleum Coke," in Virgil Guthrie (ed.), *Petroleum Processing Handbook*, New York, NY, McGraw-Hill, pp. 14-15. Mason, R.L. (1981) "Developing Prediction Equations for Fuels and Lubricants," SAE Paper 811218, p.34. October 1981. Mosby, F., G.B. Hoekstra, T.A. Kleinhenz, and J.M. Sokra (1976) "Pilot Plant Proves Resid Process," in *Chemistry of Petroleum Processing and Extraction*, MSS Information Corporation, p.227. National Institute for Petroleum and Energy Research (1990 through 2001) *Motor Gasolines, Summer* and *Motor Gasolines, Winter*. National Institute for Petroleum and Energy Research (1992) Fuel Oil Surveys, Bartlesville, OK. Ringen, S., J. Lanum, and F.P. Miknis (1979) "Calculating Heating Values from the Elemental Composition of Fossil Fuels," *Fuel*, Vol. 58, January 1979, p.69. Rose, J.W. and J.R. Cooper (1977) *Technical Data on Fuel*, The British National Committee, World Energy Conference, London, England. SAIC (1992) "Analysis of the Relationship Between Heat and Carbon Content of U.S. Fuels: Final Task Report," Science Applications International Corporation, prepared for the U.S. Energy Information Administration, Office of Coal, Nuclear, Electric and Alternative Fuels. Washington, DC. SAIC (2002) Analysis prepared by Science Applications International Corporation for EPA, Office of Air and Radiation, Market Policies Branch. U.S. National Research Council (1927) *International Critical Tables of Numerical Data, Physics, Chemistry, and Technology,* New York, NY, McGraw-Hill. Unzelman, G.H. (1992) "A Sticky Point for Refiners: FCC Gasoline and the Complex Model," *Fuel Reformulation*, July/August 1992, p. 29. USGS (1998) CoalQual Database Version 2.0, U.S. Geological Survey. Vorum, D.A. (1974) "Fuel and Synthesis Gases from Gaseous and Liquid Hydrocarbons," in American Gas Association, *Gas Engineer's Handbook*, New York, NY, Industrial Press, p. 3/71. Ward, C.C (1978) "Petroleum and Other Liquid Fuels," in *Marks' Standard Handbook for Mechanical Engineers*, New York, NY, McGraw-Hill, pp. 7-14. 1 2 7 1 2 3 10 11 ## Figure B-3. Carbon Content of Pure Hydrocarbons as a Function of Carbon Number Source: J.M. Hunt, Petroleum Geochemistry and Geology (San Francisco, CA, W.H. Freeman and Company, 1979), pp. 31-37.